开篇:为什么分享这篇文章

我是 dtsola ,作为一名 IT 解决方案架构师和一人公司实践者,我每天都在思考一个问题:在 AI 浪潮下,技术人员的价值究竟在哪里?

当我读到 Addy Osmani 的这篇《The Next Two Years of Software Engineering》时,我感到一种久违的清醒。这不是又一篇贩卖焦虑的"AI 将取代程序员"文章,也不是盲目乐观的"技术万能论"。它用数据和逻辑,为我们勾勒出五个关键问题的双重可能性——既有悲观情景,也有乐观出路。

作为在一线摸爬滚打的技术人员,我深知:我们需要的不是预测,而是准备。无论是独立开发者、团队成员,还是技术管理者,这篇文章都提供了一份难得的行动指南。

以下是原文的完整内容,我保持了它的原汁原味,希望能给同样在思考未来的你,带来一些启发。


软件行业正处于一个奇特的拐点。AI 编码已经从"加强版自动补全"演变为能够自主执行开发任务的智能代理。曾经推动科技行业招聘热潮的经济繁荣,已经让位于效率至上的新准则:如今公司往往更看重盈利能力而非增长速度,更青睐有经验的员工而非应届毕业生,更倾向于配备更好工具的小型团队。

与此同时,新一代开发者正以不同的思维方式进入职场:对职业稳定性持务实态度,对加班文化持怀疑态度,从第一天起就习惯了 AI 辅助。

接下来会发生什么,确实充满不确定性。以下是五个可能塑造 2026 年之前软件工程的关键问题,每个问题都有两种截然不同的情景。这些并非真正的预测,而是准备的视角。目标是为应对接下来的变化提供清晰的路线图,基于当前数据,并以这个社区所熟知的健康怀疑精神加以调和。


1. 初级开发者问题

核心要点: 初级开发者招聘可能会随着 AI 自动化入门级任务而崩溃,或者随着软件渗透到各个行业而反弹。两种未来都需要不同的生存策略。

传统的"学习编码 → 获得初级职位 → 成长为高级开发者"路径正在动摇。哈佛大学一项针对 6200 万名工人的研究发现,当公司采用生成式 AI 时,初级开发者的就业率在六个季度内下降约 9-10%,而高级开发者的就业率几乎没有变化。大型科技公司在过去三年中减少了 50% 的应届毕业生招聘。正如一位工程师冷嘲热讽地说:"当 AI 编码代理成本更低时,为什么要花 9 万美元雇一个初级开发者?"

这不仅仅是 AI 的问题。利率上升和疫情后调整等宏观因素在 2022 年左右就已经产生影响,那时 AI 工具还未普及。但 AI 加速了这一趋势。一个配备 AI 辅助的高级工程师现在可以完成过去需要一个小团队才能完成的工作。公司悄悄地不再招聘初级开发者,而不是裁员。

反转情景: AI 释放了各行各业对开发者的巨大需求,而不仅仅是科技行业。医疗保健、农业、制造业和金融业都开始嵌入软件和自动化。AI 不是取代开发者,而是成为一种力量倍增器,将开发工作扩展到从未雇用过程序员的领域。我们会看到更多入门级职位,只是形式不同:能够快速为特定领域构建自动化和集成的"AI 原生"开发者。

美国劳工统计局仍然预测从 2024 年到 2034 年软件工作岗位将增长约 15%。如果企业使用 AI 来扩大产出而不是严格削减人员,他们将需要人类来抓住 AI 创造的机会。

悲观情景的长期风险往往被忽视:今天的初级开发者是明天的高级工程师和技术领导者。完全切断人才管道,你就会在 5-10 年内造成领导力真空。行业资深人士称之为"缓慢衰退":一个停止培养接班人的生态系统。

应对策略:

初级开发者: 让自己精通 AI 并具备多样化技能。展示一个初级开发者加上 AI 可以匹配一个小团队的产出。使用 AI 编码代理(Cursor/Antigravity/Claude Code/Gemini CLI)构建更大的功能,但要理解并能解释每一行代码(如果不是大部分的话)。专注于 AI 无法轻易替代的技能:沟通、问题分解、领域知识。关注相邻角色(QA、DevRel、数据分析)作为切入点。构建作品集,特别是集成 AI API 的项目。考虑学徒制、实习、合同工作或开源贡献。不要成为"又一个需要培训的应届毕业生";要成为一个能立即发挥作用、学习迅速的工程师。

高级开发者: 初级开发者减少意味着更多琐碎工作会落到你的盘子里。依靠自动化处理常规任务,但不要事事亲力亲为。建立 CI/CD、代码检查工具和 AI 辅助测试来捕获基本问题。通过开源或指导其他部门的同事进行非正式导师工作。坦率地向管理层说明全是高级开发者团队的风险。如果初级开发者需求反弹,准备好有效地引导新人并以利用 AI 的方式进行委派。你的价值在于倍增整个团队的产出,而不仅仅是你自己的代码。


2. 技能问题

核心要点: 随着 AI 编写大部分代码,核心编程技能可能会退化,或者变得比以往任何时候都更关键,因为人类开发者专注于监督。未来几年将决定我们是否用速度换取理解。

84% 的开发者现在定期使用 AI 辅助。对许多人来说,面对 bug 或新功能时的第一反应不是从头开始编写代码,而是编写提示词并拼接 AI 生成的代码片段。入门级程序员正在跳过"困难的方式":他们可能永远不会从头构建二叉搜索树或独立调试内存泄漏。

技能组合正在从实现算法转向知道如何向 AI 提出正确的问题并验证其输出。现在阶梯的第一级要求提示和验证 AI,而不是展示原始编码能力。一些高级工程师担心这会产生一代无法独立编码的人,一种技能退化。AI 生成的代码会引入微妙的 bug 和安全漏洞,经验不足的开发者可能会忽略。

反面情景: 随着 AI 处理常规的 80%,人类专注于最难的 20%。架构、棘手的集成、创意设计、边缘情况:机器单独无法解决的问题。AI 的普及不是让深度知识过时,而是让人类专业知识比以往任何时候都更重要。这就是"高杠杆工程师",他们使用 AI 作为力量倍增器,但必须深入理解系统才能有效地运用它。

如果每个人都能使用 AI 编码代理,区分优秀开发者的是知道 AI 何时是错误的或次优的。正如一位高级工程师所说:"最好的软件工程师不会是最快的编码者,而是那些知道何时不信任 AI 的人。"

编程正在转变:减少输入样板代码,增加审查 AI 输出的逻辑错误、安全漏洞和与需求的不匹配。关键技能变成软件架构、系统设计、性能调优和安全分析。AI 可以快速生成一个 Web 应用,但专家工程师确保 AI 遵循了安全最佳实践,没有引入竞态条件。

2025 年的开发者讨论出现分歧。一些人承认他们几乎从不"手工"编写代码,并认为编码面试应该演变。其他人则认为跳过基础知识会导致当 AI 的输出出现问题时需要更多救火工作。行业开始期望工程师兼具:AI 速度和质量保证的基础智慧。

应对策略:

初级开发者: 将 AI 用作学习工具,而不是拐杖。当 AI 编码代理(Cursor/Antigravity/Claude Code/Gemini CLI)建议代码时,审查它为什么有效,识别弱点。偶尔禁用你的 AI 助手,从头编写关键算法。优先考虑 CS 基础:数据结构、算法、复杂性、内存管理。实现项目两次,一次使用 AI,一次不使用,然后比较。学习提示工程和工具掌握。训练自己进行严格测试:编写单元测试,在不立即询问 AI 的情况下阅读堆栈跟踪,熟悉调试器。深化 AI 无法复制的互补技能:系统设计、用户体验直觉、并发推理。展示你既可以使用 AI 快速产出解决方案,又可以在 AI 失败时处理棘手问题。

高级开发者: 将自己定位为质量和复杂性的守护者。磨练你的核心专业知识:架构、安全、扩展、领域知识。练习使用 AI 组件建模系统并思考故障模式。了解 AI 生成代码中的最新漏洞。拥抱你作为导师和审查者的角色:定义 AI 使用可接受的地方以及必须进行人工审查的地方(支付或安全代码)。倾向于创造性和战略性工作;让初级+AI 组合处理常规 API 连接,而你决定构建哪些 API。投资软技能和跨领域知识。了解新工具和最佳实践的最新动态。加倍关注使人类开发者不可或缺的东西:良好的判断力、系统级思维和导师能力。


3. 角色问题

核心要点: 开发者角色可能会缩减为有限的审计(监督 AI 生成的代码),或者扩展为关键的编排者职位,设计和管理 AI 驱动的系统。无论哪种方式,增加价值意味着不仅仅是编码。

这里的极端情况非常鲜明。在一种愿景中,开发者看到他们的创造性责任减少。他们不是构建软件,而是主要审计和看管 AI 输出。AI 系统(或使用无代码平台的"公民开发者")处理生产;人类开发者审查自动生成的代码,检查错误、偏见或安全问题,并批准部署。制造者变成检查者。代码创造的乐趣被风险管理的焦虑所取代。

有报道称,工程师花更多时间评估 AI 生成的拉取请求和管理自动化管道,花更少时间从头开始编写代码。编程感觉不再像创造性解决问题,而更像合规性。正如一位工程师感叹的那样:"我不想最终成为一个代码清洁工,清理 AI 扔过墙的东西。"

替代未来要有趣得多:开发者演变为高层编排者,结合技术、战略和伦理责任。AI"工作者"意味着人类开发者承担架构师或总承包商的角色,设计整体系统,决定哪些任务分配给哪个 AI 或软件组件,从许多移动部件中编织解决方案。

一家低代码平台的 CEO 阐述了这一愿景:在"代理式"开发环境中,工程师成为"作曲家",编排 AI 代理和软件服务的合奏。他们不会自己写每一个音符,但他们定义旋律:架构、接口、代理如何交互。这个角色是跨学科和创造性的:部分软件工程师,部分系统架构师,部分产品策略师。

乐观的看法:随着 AI 处理机械工作,开发者角色必然转向更高价值的活动。工作可能会变得更有趣。总得有人决定 AI 应该构建什么,验证产品是否有意义,并持续改进它。

走向哪个方向可能取决于组织如何选择整合 AI。将 AI 视为劳动力替代的公司可能会精简开发团队,并要求剩余的工程师保持自动化运行。将 AI 视为放大团队方式的公司可能会保持类似的人员配置,但让每个工程师交付更雄心勃勃的项目。

应对策略:

初级开发者: 寻找超越编写代码的机会。自愿承担测试用例编写、CI 管道设置或应用程序监控:与审计员/保管员角色一致的技能。通过个人项目保持你的创造性编码活力,这样你就不会失去构建的乐趣。培养系统思维:学习组件如何通信,什么使 API 设计良好。阅读工程博客和系统设计案例研究。熟悉代码生成之外的 AI 和自动化工具:编排框架、AI API。提高沟通技能,书面和口头。编写文档就像向别人解释一样。不仅要问高级同事"我的代码有效吗?"还要问"我考虑了正确的事情吗?"准备成为验证者、设计者和沟通者,而不仅仅是编码者。

高级开发者: 倾向于领导和架构责任。塑造 AI 和初级团队成员遵循的标准和框架。定义代码质量检查清单和 AI 使用的伦理政策。了解 AI 生成软件的合规性和安全主题的最新动态。专注于系统设计和集成专业知识;自愿绘制跨服务的数据流并识别故障点。熟悉编排平台(Kubernetes、Airflow、无服务器框架、代理编排工具)。加倍关注你作为技术导师的角色:更多代码审查、设计讨论、技术指南。磨练你快速评估他人(或某物)代码并提供高层反馈的能力。培养产品和商业意识;了解为什么要构建功能以及客户关心什么。跟随产品经理或参加客户反馈会议。通过原型、黑客马拉松或新兴技术研究保护你的创造激情。从编码者演变为指挥者。


4. 专家 vs 通才问题

核心要点: 狭窄的专家面临其利基被自动化或过时的风险。快速变化、AI 注入的环境奖励 T 型工程师:具有一两项深度技能的广泛适应性。

鉴于模型、工具和框架的兴衰速度如此之快,将你的职业生涯押注在单一技术栈上是有风险的。一个遗留框架的专家可能会突然发现,当新的 AI 工具以最少的人工干预处理该技术时,他们的需求就会减少。那些"专注于单一技术栈、框架或产品领域"的开发者可能会发现该领域正在衰落或变得多余。

想想 COBOL 开发者、Flash 开发者,或者那些在行业转移时没有转型的移动游戏引擎专家。现在不同的是变化的速度。AI 自动化可以使某些编程任务变得微不足道,削弱围绕这些任务的角色。一个只知道一件事的专家(微调 SQL 查询、将 Photoshop 设计切片成 HTML)可能会发现 AI 处理了 90% 的工作。

招聘经理追逐最新的利基。几年前每个人都想要云基础设施专家;现在 AI/ML 工程师激增。那些狭隘地专注于昨天技术的人,随着该利基失去光彩而感到停滞。

相反的结果是新形式的专业化:"多才多艺的专家"或 T 型开发者。在一两个领域的深度专业知识(垂直笔画),在许多其他领域的广泛熟悉(水平笔画)。这些工程师成为多学科团队中的"粘合剂";他们与其他类型的专家沟通,并在需要时填补空白。

公司不再想要过于肤浅或过于狭隘的开发者;他们想要强大的核心能力加上跨技术栈工作的能力。部分原因是效率:T 型工程师通常可以端到端解决问题,而无需等待交接。部分原因是创新:知识的交叉授粉会带来更好的解决方案。

AI 工具实际上更能增强通才,使一个人更容易处理多个组件。后端工程师可以依靠 AI 帮助创建合理的 UI;前端专家可以让 AI 生成服务器样板。富含 AI 的环境让人们可以更广泛地操作。与此同时,深度专家可能会发现他们的利基部分自动化,没有简单的方法来扩展。

近 45% 的工程角色现在期望在多个领域具有熟练程度:编程加云基础设施知识,或前端加一些 ML 熟悉度。

应对策略:

初级开发者: 尽早建立广泛的基础。即使被雇用担任特定角色,也要窥视该孤岛之外。如果你在做移动开发,学习后端基础;如果你在做前端,尝试编写一个简单的服务器。学习部署过程和 Docker 或 GitHub Actions 等工具。确定一两个真正让你兴奋的领域并深入:这成为你的垂直专业知识。将自己打造成混合型:"具有云安全重点的全栈开发者"或"具有 UX 专业知识的前端开发者"。使用 AI 工具快速学习新领域;当你是后端新手时,让 ChatGPT 生成入门 API 代码并研究它。培养持续再培训的习惯。参加黑客马拉松或跨职能项目,强迫自己进入通才模式。告诉你的经理你想接触项目的不同部分。适应性是你职业生涯早期的超能力。

高级开发者: 绘制你的技能图谱:你在哪些方面是专家,你只是肤浅地接触过哪些相关领域?选择一两个相邻领域并承诺变得精通。如果你是后端数据库专家,熟悉现代前端框架或学习 ML 管道基础。在你的弱项领域做一个小项目,借助 AI 辅助。将你的深度专业知识与新环境整合;如果你专注于 Web 应用性能,探索这些技能如何应用于 ML 推理优化。倡导或设计你的角色更加跨职能。自愿成为涉及多个领域的项目的"集成冠军"。指导他人以传播技能,同时从他们那里学到一些东西。更新你的简历以反映多样性。利用你的经验识别模式和可转移的知识。成为 T 型榜样:在你的专业领域深入(赋予权威和信心),但积极地横向延伸。


5. 教育问题

核心要点: CS 学位会继续保持金标准,还是更快的学习路径(训练营、在线平台、雇主培训)会超越它?大学可能难以跟上每隔几个月就变化的行业。

四年制计算机科学学位长期以来一直是进入软件角色的主要门票。但这一传统正在受到质疑。

一种未来: 大学仍然重要,但难以保持相关性。学位仍然是默认凭证,但课程落后于快速发展的需求,受到缓慢的课程更新周期和官僚审批流程的阻碍。学生和雇主都觉得学术界与行业脱节,教授的理论或过时的实践无法转化为工作技能。

最近的毕业生报告说,他们在学位期间从未学习过云计算、现代 DevOps 或 AI 工具。如果大学要求高时间和经济投资,同时提供低相关性的教育,他们就有被视为昂贵守门人的风险。但许多公司出于惯性仍然要求学士学位,因此负担转移到学生身上,通过训练营、在线课程和自学项目来填补空白。

学生贷款债务巨大,公司花费数十亿美元培训应届毕业生,因为这些毕业生缺乏工作场所所需的技能。大学可能会在这里添加一门 AI 伦理课程,在那里添加一门云计算选修课,但当他们实施某些东西时,行业工具已经发展了。

颠覆性情景: 传统教育越来越多地被新系统取代。编码训练营、在线认证、自学作品集、雇主创建的培训学院。许多知名雇主(谷歌、IBM)已经取消了某些技术角色的学位要求。2024 年,近 45% 的公司计划至少取消某些职位的学士学位要求。

训练营已经成熟。他们培养的毕业生与 CS 毕业生一起被顶级公司录用。这些项目更短(12 周强化),专注于实用技能:当前框架、云服务、团队合作。招聘货币正在转向实时作品集、微证书和经过验证的技能。强大的 GitHub 作品集或公认的认证可以绕过学位要求。

雇主驱动的教育正在出现:公司创建自己的培训管道或与训练营合作。一些大型科技公司已经为非传统候选人开设了内部"大学"。AI 本身提供了新的学习方式:AI 导师、交互式编码沙盒、大学环境之外的个性化指导。

模块化学习生态系统比昂贵的四年制学位更容易获得。一个没有强大 CS 大学的国家的孩子可以参加与硅谷某人相同的 Coursera 课程并构建相同的作品集。

应对策略:

有抱负的/初级开发者: 如果在传统 CS 课程中,不要完全依赖它。通过实际项目增强课程作业:构建 Web 应用,为开源做贡献。寻求实习或合作机会。如果你的课程错过了热门话题,通过在线平台学习它们。获得行业认可的认证(GCP、AWS、Azure)以表明实用知识。如果自学或在训练营中,专注于引人注目的作品集:至少一个具有良好文档的实质性项目。在开发者社区中活跃:为开源做贡献,撰写技术文章。通过 LinkedIn、聚会、开发活动建立网络。让有经验的开发者为你担保。持续学习;技术技能的半衰期很短。使用 AI 作为你的私人导师。以具体方式证明你的技能:作品集、认证和智能谈论你工作的能力将打开大门。

高级开发者和领导者: 仅凭你的证书不会永远支撑你。投资持续教育:在线课程、研讨会、会议、认证。以新方式验证你的技能;准备好通过实际问题评估当前能力的面试。维护使用新技术的副项目。重新评估工作要求:你真的需要新员工拥有 CS 学位,还是你需要某些技能和学习能力?推动技能优先招聘以扩大你的人才库。支持内部培训计划或学徒式角色。为没有正式背景的初级开发者倡导导师圈。与学术界和替代方案互动:顾问委员会、客座讲座、对课程差距的反馈。在你自己的职业发展中反映这一点:现实世界的成就和持续学习比额外的学位更重要。


贯穿主线

这些情景并不相互排斥。现实将从所有这些情景中汲取元素。一些公司会减少初级招聘,而另一些公司会在新领域扩大招聘。AI 将自动化常规编码,同时提高人类接触的代码标准。开发者可能会在早上审查 AI 输出,下午制作高层架构。

一致的线索是:变化是唯一的常量。 通过对技术趋势保持关注(以及对它们的怀疑),你可以避免被炒作或厄运所措手不及。通过更新技能、多样化能力,并专注于独特的人类方面(创造力、批判性思维、协作),你将保持在循环中。

无论未来是带来编码复兴还是代码自我编写的世界,总会有对全面思考、持续学习并推动技术解决实际问题的工程师的需求。

预测未来的最佳方式是主动设计它。


结语:写给技术人的行动清单

读完这篇文章,我最大的感受是:焦虑来自不确定性,而准备带来掌控感。

Addy Osmani 没有给我们一个确定的答案,因为未来本就不确定。但他给了我们更重要的东西——一套思考框架和行动指南

作为一名架构师和一人公司实践者,我从这篇文章中提炼出三个核心认知:

1. AI 不是敌人,是放大器

无论你是初级还是高级开发者,AI 都不会直接"取代"你。真正的威胁是:那些会用 AI 的人,取代了不会用 AI 的人。关键不是抵抗 AI,而是学会与它共舞。

2. T 型能力是新时代的护城河

专家和通才的争论已经有了答案:在一两个领域深入 + 在多个领域广泛涉猎。这不是贪多,而是生存策略。当某个技术栈衰落时,你有其他选择;当团队需要跨界协作时,你是那个粘合剂。

3. 持续学习不是口号,是日常

学位、证书、过往经验,这些都是"存量"。但在一个技术半衰期越来越短的时代,你的学习速度才是真正的"增量"。无论是通过在线课程、开源项目,还是 AI 辅助学习,保持好奇心和行动力。


回到开篇的问题:在 AI 浪潮下,技术人员的价值究竟在哪里?

我的答案是:价值在于那些机器还做不好的事情——判断力、系统思维、创造力、沟通能力,以及最重要的,持续进化的能力。

未来两年会发生什么?我不知道。但我知道,当变化来临时,准备好的人不会慌张。

预测未来的最佳方式,是主动设计它。

这句话,送给每一位正在读这篇文章的技术人。


如果这篇文章对你有帮助,欢迎点赞、收藏、转发。也欢迎在评论区分享你的经验,我们一起交流学习!


我是 dtsola【IT解决方案架构师 | 一人公司实践者】 ;专注商业、技术、一人公司、个人成长分享。

提供服务:AI项目咨询 | 技术解决方案 | IT项目实施 | 企业技术顾问

博客:https://www.dtsola.com

公众号&微信:dtsola(交流经验、商业合作、IT咨询;加微信,请备注来意)


#独立开发者 #AI编程 #个人开发者 #一人公司 #程序员 #软件开发者 #创业者 #数字游民 #AI创业 #软件工程


Work Less, Earn More, Enjoy Life.